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Abstract
In order to scale, future systems will need to dramatically

reduce data movement. Data movement is expensive in cur-

rent designs because (i) traditional memory hierarchies force

computation to happen unnecessarily far away from data and

(ii) processing-in-memory approaches fail to exploit locality.

We proposeMemory Services, a flexible programmingmodel

that enables data-centric computing throughout the memory

hierarchy. In Memory Services, applications express func-

tionality as graphs of simple tasks, each task indicating the

data it operates on. We design and evaluate Livia, a new

system architecture for Memory Services that dynamically

schedules tasks and data at the location in the memory hi-

erarchy that minimizes overall data movement. Livia adds

less than 3% area overhead to a tiled multicore and acceler-

ates challenging irregular workloads by 1.3× to 2.4× while

reducing dynamic energy by 1.2× to 4.7×.
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1 Introduction
Computer systems today are increasingly limited by data

movement. Computation is already orders-of-magnitude

cheaper than moving data, and the shift towards leaner and

specialized cores [17, 22, 36, 39] is exacerbating these trends.

Systems need new techniques that dramatically reduce data

movement, as otherwise data movement will dominate sys-

tem performance and energy going forward.

Why is data so far from compute? Conventional CPU-

based systems reduce data movement via deep, multi-level

cache hierarchies. This approach works well on programs

that have hierarchical reuse patterns, where smaller cache

levels filter most accesses to later levels. However, these

systems only process data on cores, forcing data to traverse
the full memory hierarchy before it can be processed. On

such systems, programswhose data doesn’t fit in small caches

often spend nearly all their time shuffling data to and fro.

Since such compute-centric systems are often inefficient,

prior work has proposed to do away with them and place

cores close to memory instead. In these near-data processing
(NDP) or processing-in-memory (PIM) designs [13, 14, 29, 72],
cores enjoy fast, high-bandwidth access to nearby memory.

PIM works well when programs have little reuse and when

compute and data can be spatially distributed. However, es-

chewing a cache hierarchy makes PIM far less efficient on

applications with significant locality and complicates several

other issues, such as synchronization and coherence. In fact,

prior work shows that for many applications, conventional

cache hierarchies are far superior to PIM [5, 40, 90, 97].

Computing near data while exploiting locality: In this

work, we propose the next logical step, which lies between

these two extremes: reducing data movement by perform-

ing compute throughout the memory hierarchy—near caches
large and small as well as near memory. This lets the system

perform computation at the location in the memory hierar-

chy that minimizes data movement, synchronization, and

cache pollution. Critically, this can mean moving computa-

tion to data or moving data to computation, and in some

cases moving both.

Prior work has already shown that performing compu-

tation within the memory hierarchy is highly beneficial.

https://doi.org/10.1145/3373376.3378497
https://doi.org/10.1145/3373376.3378497
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Fig. 1. Livia minimizes data movement by executing tasks at their

“natural” location in the memory hierarchy.

GPUs [94] andmulticores [93] perform atomic memory oper-

ations on shared caches to reduce synchronization costs, and

caches can be repurposed to accelerate highly data-parallel

problems [1], like deep learning [24] and automata process-

ing [87]. However, prior techniques are limited to performing

fixed operations at a fixed location in the cache hierarchy.

To benefit a wide swath of applications, data-centric sys-

tems must overcome these limitations. First, the memory

hierarchy must be fully programmable. Applications should
be able to easily extend the memory interface via a simple

programming model. Second, the system must decide where
to perform computation—not the application programmer!

The best location to perform a given computation depends

on many factors (e.g., data locality, cache size, etc.). It is

very difficult for programmers to reason about these factors.

Caches, not scratchpads, have become ubiquitous because

they relieve programmers from the burden of placing data;

data-centric systems must provide similar ease-of-use for

placing computation.

Our approach: We overcome these limitations through a

combination of software and hardware. First, we propose

Memory Services, a flexible programming interface that

facilitates computation throughout the memory hierarchy.

Memory Services break application functionality into a graph

of short, simple tasks. Each task is associated with a memory

location that determines where it will execute in the mem-

ory hierarchy, and can spawn additional tasks to implement

complex computations in a fork-join or continuation-passing

fashion. Memory Services ask programmers what operations
to perform, but not where to perform them.

Second, we present Livia,
1
an efficient architecture for

Memory Services. Livia introduces specialized Memory Ser-
vice Elements (MSEs) throughout the memory hierarchy.

Each MSE consists of a controller, which schedules tasks

and data in their best location in the memory hierarchy, and

an execution engine, which executes the tasks themselves.

Fig. 1 illustrates how Memory Services reduce data move-

ment over prior architectures. The left shows a chain of three

dependent tasks which, together, implement a higher-level

operation (e.g., a tree lookup; see Sec. 2). Suppose tasks 1

and 2 have good locality and task 3 does not. The baseline

load-store architecture (left) executes tasks on the top-left

1
So named for the messenger pigeon, a variety of Columba livia.

core, and so must move all data to this core. Hence, though

it caches data for 1 and 2 on-chip, it incurs many expen-

sive round-trips that add significant data movement. PIM

(middle) moves tasks closer to data but sacrifices locality

in tasks 1 and 2 , incurring additional expensive DRAM

accesses. In contrast, Livia (right) minimizes data movement

by executing tasks in their natural location in the memory

hierarchy, exploiting locality and eliminating unnecessary

shuffling of data between tasks.

In this paper, we present Memory Services that accelerate

a suite of challenging irregular computations. Irregular com-

putations access memory in unpredictable patterns and are

dominated by data movement. We use this suite of irregular

workloads to explore the design space of the Memory Ser-

vice programming model and Livia architecture, as well as

to demonstrate the feasibility of mapping Memory Services

onto our specialized MSE hardware.

Beyond irregular computations, we believe that Memory

Services can accelerate a wide range of tasks, such as back-

ground systems (e.g., garbage collection [60], data dedup [86]),

cache optimization (e.g., sophisticated cache organizations [77,

80, 81], specialized prefetchers [6, 98, 99]), as well as other

functionality that is prohibitively expensive in software to-

day (e.g., work scheduling [62], fine-grain memoization [28,

102]). We leave these to future work.

Contributions: This paper contributes the following:
1. We propose the Memory Service programming model

to facilitate data-centric programming throughout the

memory hierarchy. We define a simple API forMemory

Services and develop a library of Memory Services for

common irregular data structures and algorithms.

2. We design Livia, an efficient system architecture for

the Memory Services model. Livia distributes special-

ized Memory Service Elements (MSEs) throughout the

memory hierarchy that schedule and execute Memory

Service tasks.

3. We explore the design space of MSEs. This leads us

to a unique hybrid CPU-FPGA architecture that dis-

tributes reconfigurable logic throughout the memory

hierarchy.

4. We evaluate Memory Services for our irregular work-

loads against priormulticore and processing in-memory

(PIM) designs. With only 3% added area, Livia improves

performance by up to 1.3× to 2.4× while reducing dy-

namic energy by up to 1.2× to 4.7×.

Road map: Sec. 2 motivates Memory Services on a repre-

sentative irregular workload. Secs. 3 and 4 describe Memory

Services and Livia. Sec. 5 presents our experimental method-

ology, and Sec. 6 evaluates Livia. Sec. 7 discusses related

work, and Sec. 8 concludes with directions for future work.



2 Background and Motivation
Webegin by discussing prior approaches to reduce datamove-

ment, and why they fall short on irregular computations.

2.1 Data movement is a growing problem
Data movement fundamentally limits system performance

and cost, because moving data takes orders-of-magnitude

more time and energy than processing it [2, 15, 21, 25, 50, 83].

Even on high-performance, out-of-order cores, system per-

formance and energy are often dominated by accesses to

the last-level cache (LLC) and main memory [39, 50]. This

trend is amplified by the shift towards specialized cores that

significantly reduce the time and energy spent on computa-

tion [39, 48, 50].

Irregularworkloads are important and challenging: Data
movement is particularly challenging on applications that

access data in irregular and unpredictable patterns. These

include many important workloads in, e.g., machine learn-

ing [32, 58, 68], graph processing [54, 59], and databases [92].

Though locality is often present in these workloads [8],

standard techniques to reduce data movement struggle. Irreg-

ular prefetchers [44, 47, 96] can hide data access latency, but

they do not reduce overall data movement [62]. Moreover,

irregular workloads are poorly suited to common accelerator

designs [18, 65]. Their data-dependent control does not map

well onto an array of simple, replicated hardware with cen-

tralized control, and their unpredictable memory accesses

render scratchpad memories ineffective.

2.2 Motivating example: Lookups in a binary tree
To motivate Livia’s approach and illustrate the challenges

faced by prior techniques, we consider how different systems

behave on a representative workload: looking up items in

the binary tree depicted in Fig. 2. What is the best way to

map such a tree onto a memory hierarchy?

Fig. 2. A self-balancing search tree.

The ideal mapping places the most frequently accessed

nodes in the tree closest to the requesting core, as illustrated

in Fig. 3. This placement is ideal because it makes the best

use of the most efficient memories (i.e., the smallest caches).

Ideal data movement: We can now consider how much

data movement tree lookups will incur in the best case. The

highlighted path in Fig. 3 shows how a single lookup must

traverse from the root to a leaf node, accessing larger caches

along the way as it moves down the memory hierarchy.

Hence, the ideal data movement is the cost of walking nodes

along this lookup path: accessing each cache/memory plus
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Fig. 3. Ideal data movement: The tree lookup walks the memory

hierarchy, from the root in the L1 to the leaf in memory.

traversing the NoC. This cost is ideal because it considers

only the cost of loading each node and proceeding to the next,

ignoring the cost of locating nodes (i.e., accessing directories)

and processing them (i.e., executing lookup code).

Modeling methodology: Throughout this section, we com-

pare the time per lookup for a 512MB AVL tree [20, 23] on a

64-core system with a 32MB LLC and mesh on-chip network.

(See Sec. 5 for further details.) We model how each system

performs lookups, following the figures, by adding up the

average access cost to access the tree at each level of the

memory hierarchy. This simple model matches simulation.

Fig. 3 shows that Ideal data movement is dominated by the

LLC and memory, primarily in the NoC. We now consider

how practical systems measure up to this Ideal.

2.3 Current systems force needless data movement
Traditional multicore memory hierarchies are, in one respect,

not far from Ideal. Fig. 4 shows how, in a conventional system,

each level of the tree eventually settles at the level of the

memory hierarchy where it ought to—at least, most of the

time. The problem is that, since lookup code only executes

on cores, data is never truly settled. This has several harmful

effects: data moves unnecessarily far between lookups, each

lookup must check multiple caches along the hierarchy, and

each lookup evicts other useful data in earlier cache levels.
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Fig. 4. Compute-centric systems frequently move data long dis-

tances between cores and the memory hierarchy.

The net effect of these design flaws is illustrated by the red

arrows in Fig. 4, showing how data repeatedly moves up and

down the memory hierarchy. Fig. 4 also shows the time per

lookup. The traditional multicore is 2.2× worse than Ideal,



adding cycles to execute lookup code on cores and in the

NoC moving data between cores and the LLC.

Finally, note that replacing cores with an acceleratorwould

not be very effective because data movement is the main

problem. Even if an accelerator or prefetcher could eliminate

all the time spent on cores, lookups would still take 1.9×

longer than Ideal data movement dictates.

2.4 Processing in-memory fails to exploit locality
Processing in-memory (PIM) avoids the inefficiency of

a conventional cache hierarchy by executing lookups near

memory, below the shared LLC. While many variations of

these systems exist, a common theme is that they do away

with deep cache hierarchies, preferring to access memory di-

rectly. This may benefit streaming computations, but it cedes

abundant locality in irregular workloads like tree lookups.

For these workloads, PIM does not capture our notion of

processing in data’s natural location—namely, the caches.
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Fig. 5. Processing in-memory (PIM) sacrifices locality.

The result is significantly worse data movement for PIM

systems. Fig. 5 shows how a pure PIM approach incurs expen-

sive DRAM accesses, where Ideal has cheap cache accesses,

and still incurs NoC traffic between memory controllers. The

result is a slowdown of 4.9× over Ideal. In fact, this is opti-

mistic, as our model ignores limited bandwidth at the root.

2.5 Prior processing in-cache approaches fall short
Hybrid PIM designs [5, 33] process data on cores if the

data is present in the LLC, and migrate them to execute near-

memory otherwise. Fig. 6 illustrates how lookups execute on

EMC [33]. The first few levels of the tree execute on a core,

like a compute-centric system, until the tree falls off-chip

and is offloaded to the memory controller, like PIM.

L2s

Shared L3
(slices)

Cores
+ L1s

Memory

Task execution Data movement

Hybrid Ideal
0

2

4

6

8

10

C
yc

le
s

(×
10

0) 1.
9×

Fig. 6. Hybrid PIM still incurs unnecessary data movement.

One might think that these hybrid designs capture most

of the benefit of Memory Services for tree lookups, but Fig. 6

shows this is not so. Because these designs adopt the compute-

centric design for data that fits on-chip, they still incur much

of its inefficiency. Overall, Hybrid-PIM is only 23% better

than a compute-centric system, and still 1.9× worse than

Ideal.

The unavoidable conclusion is that compute must be dis-

tributed throughout the memory hierarchy, rather than clus-

tered at its edges, so that lookups can execute in-cache where

the data naturally resides. Unfortunately, prior in-cache
computing designs are too limited to significantly reduce

data movement on the irregular workloads we consider. The

few fully programmable near-cache designs focus on co-

herence [55, 74, 82] or prefetching [6, 99], not on reducing

data movement. The others only support a few operations,

e.g., remote memory operations (RMOs) for simple tasks like

addition [5, 37, 42, 51, 57, 79, 94] or, more recently, logical op-

erations using electrical properties of the data array [1, 24].

Most designs operate only at the LLC, and none actively

migrate tasks and data to their best location in the hierarchy.

These designs stream instructions one-by-one from cores.

This means that, for each node in the tree, instructions must
move to caches and data must return to cores (i.e., to decide

which child to follow). Hence, though these designs acceler-

ate part of task execution in-cache, their overall data move-

ment still looks like Fig. 6 and faces the same limitations.

2.6 Memory Services are nearly Ideal
Irregular workloads require a different approach. Frequent

data movement to and from cores must be eliminated. In-

stead, cores should offload a high-level computation into the

memory hierarchy, with no further communication until the

entire computation is finished.
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Fig. 7. Memory Services on Livia are nearly ideal.

Fig. 7 shows how Livia executes tree lookups as a Memory

Service. The Memory Service breaks the lookup into a chain

of tasks, where each task operates at a single node of the tree

(see Fig. 9) and spawns tasks within the memory hierarchy to

visit the node’s children. The lookup begins executing on the

core, and, following the path through the tree, spawned tasks

migrate down the hierarchy to where nodes have settled.

(Sec. 4 explains how Livia schedules tasks within the memory

hierarchy and migrates data to its best location.)



Comparing to Fig. 3, Livia looks very similar to Ideal. Livia

adds time only to (i) execute lookup code and (ii) access
directories to locate data in the hierarchy. These overheads

are small, so Livia achieves near-Ideal behavior.

To sum up, Memory Services express complex compu-

tations as graphs of dependent tasks, and Livia hardware

schedules these tasks to execute at the best location in the

memory hierarchy. Together, these techniques eliminate un-

necessary data movement while capturing locality when it

is present. Livia thus minimizes data movement by enabling

data-centric computing throughout the memory hierarchy.

3 Memory Services API
We describe Memory Services starting from the program-

mer’s view, and then work our way down to Livia’s imple-

mentation of Memory Services.

Executionmodel: Memory Services are designed to acceler-

ate workloads that are bottlenecked on data accesses, which

follow a pattern of: loading data, performing a short compu-

tation, and loading more data. Memory Services include this

data access explicitly within the programming model so that

tasks can be proactively scheduled near their data.

Memory Services express application functionality as a

graph of short, simple, dependent tasks. This is implemented

by letting each task spawn further tasks and pass data to

them. Each task gets its own execution context and runs con-

currently (and potentially in parallel) with the thread that

spawns it. Thismodel supports both fork/join and continuation-

passing programming styles. To simplify programming,Mem-

ory Services execute in a cache-coherent address space like

any other thread in a conventional multicore system.

Invoking tasks: Applications are able to invoke memory

services tasks using ms_invoke, which has the C-like type

shown in Fig. 8. ms_invoke runs the ms_function_t called
fn on data residing at address data_ptr with additional argu-

ments args. Before calling ms_invoke, the caller initializes a
future via ms_future_init that indicates where the eventual
result of the task will be sent. ms_invoke also takes flags,
which can be currently be used to indicate (i) that the task
will need EXCLUSIVE permissions to modify data_ptr, or
that (ii) the task is STREAMING and will not reuse data_ptr.
These are both hints to the system that improve task and

data scheduling, but do not affect program correctness.

typedef void (∗ms_function_t) (
T∗ data_ptr , ms_future_t∗ future , U. . . args ) ;

void ms_invoke(ms_function_t fn , int flags ,
T∗ data_ptr , ms_future_t∗ future , U. . . args ) ;

void ms_future_init(ms_future_t∗ future ) ;
void ms_send(ms_future_t∗ future , R result ) ;
R ms_wait(ms_future_t future ) ;

Fig. 8. Memory Services API. T, U, and R are user-defined types.

Communicating results: Memory Service tasks return val-

ues to their invoker by fulfilling the future through the

ms_send API (Fig. 8). The invoker obtains this value explic-

itly by calling ms_wait. ms_invoke calls are asynchronous,
but a simple wrapper function could be placed around an

ms_invoke and accompanying ms_wait to allow for a syn-

chronous programming model similar to an RPC system.

Futures can be passed among invoked tasks until the result

is eventually sent to the invoker (see, e.g., Fig. 7).

Example: Tree lookup. Consider the following simplified

binary tree lookup function using the API in Fig. 8:

void lookup(node_t∗ node, ms_future_t∗ res , int key) {
if (node−>key == key) {

ms_send(res , node) ;
} else if (node−>key < key) {

ms_invoke(lookup, 0 , node−>left , res , key) ;
} else {

ms_invoke(lookup, 0 , node−>right , res , key) ;
}

}
. . .
ms_future_t res ;
ms_future_init(&res ) ;
ms_invoke(lookup, /∗ flags ∗/ 0 , &root , &res , /∗key∗/ 42);
node_t∗ result_node = (node_t∗) ms_wait( res ) ;

Fig. 9. Memory Service code for a simple binary tree lookup.

This example shows that Memory Service code looks quite

similar to a naïve implementation of the same code on a base-

line CPU system, and our experience has been that, for data

structures and algorithms well-suited to Memory Services,

conversion has been a mechanical process.

Memory Services on FPGA: We map Memory Services

onto FPGA through high-level synthesis (HLS). For FPGA

execution, it is especially important to identify the hot path.

Any execution that strays from this hot path will raise a flag

that causes execution to fall back to software at a known

location. To aid HLS, each task is decomposed into a series

of pure functions that map easily into combinational logic.

This decomposition effectively produces a state machine

with one of the following actions at each transition: invok-

ing another task, waiting upon a future, reading memory,

writing memory, raising the fallback flag, or task completion.

For our applications, this transformation is trivial (e.g., the

tree lookup in Fig. 9), but some tasks would be split into

multiple stages [18]. Table 1 shows the results from HLS for

our benchmarks. Memory Services require negligible area

and execute in at most a few cycles, letting small FPGAs

accelerate a wide range of irregular workloads.

Limitations: Memory Services are currently designed to

minimize data movement for a single data address per task.

Many algorithms and data structures decompose naturally



Benchmark C LoC Area (mm2) Cycles @ 2.4GHz

AVL tree 20 0.00203 4

Linked list 15 0.00212 3

PageRank 5 0.00185 4

Message queue 4 0.00178 1

Table 1.High-level synthesis on theMemory Services considered in

this paper. Designs are mapped from C through Vivado HLS to Ver-

ilog. Latency was taken from Vivado for a Xilinx Virtex Ultrascale.

For area, designs were synthesized with VTR [75] onto a Stratix-IV

FPGA model, scaled to match the more recent Stratix-10 [52, 85].

into a graph of such tasks [46]. In the future, we plan to

extend Memory Services to accelerate multi-address tasks
through in-network computing [1, 42, 70] and online data

scheduling [9, 63]. Additionally, we have thus far ported

benchmarks to the Memory Services API and done HLS by

hand, but these transformations should be amenable to a

compiler pass in future work.

4 Livia Design and Implementation
This section explains the design and implementation of Livia,

our architecture to support Memory Services. Livia is a tiled

multicore system where each tile contains an out-of-order

core (plus its private cache hierarchy), one bank of the shared

distributed LLC, and a Memory Service Element (MSE) to ac-

celerate Memory Service tasks. Livia makes small changes to

the OoO core and introduces theMSEs,which are responsible

for scheduling and executing tasks in the memory hierarchy.

Fig. 10 illustrates the design, showing how Memory Ser-

vices migrate tasks to execute in-cache where it is most

efficient. The top-left core invokes operation f infrequently

on data x , so f is sent to execute on x ’s tile when invoked. By
contrast, the bottom-left core invokes f frequently on data

y, so the data y is cached in the bottom-left core’s private

caches and f executes locally. All of this scheduling is done
transparently in hardware without bothering the programmer.
Livia heavily leverages the baseline multicore system to

simplify its implementation. It is always safe to execute Mem-

ory Services on the OoO cores—in other words, executing

on MSEs is “merely” a data-movement optimization. This

property lets Livia fall back on OoO cores when convenient,

so that Livia includes the simplest possible mechanisms that

accelerate common-case execution.

4.1 Modifications to the baseline system
Livia modifies several components of the baseline multicore

system to support Memory Services.

ISA extensions: Livia adds the following instruction:

invoke <function>

The ms_invoke API maps to the invoke instruction, which
takes a pointer to the function being called, the flags, a data_-
ptr that the function will operate on, a pointer to the future
that will hold the result, and the user-defined arguments.
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Fig. 10. Livia adds aMemory Service Element (MSE) to each tile in a

multicore. MSEs contain a controller that migrates tasks and data to

minimize data movement, and an execution engine that efficiently

executes tasks near-data. TheMSE execution engine is implemented

as either a simple in-order core or a small embedded FPGA.

While the function is encoded in the instruction, the other

arguments are passed in registers following the system’s

calling convention. (E.g., we use the x86-64 Sys-V variadic

function call ABI, where RAX also holds the number of inte-

ger registers being passed and the flags.)
invoke first probes the L1 data cache to check if data_-

ptr is present. If it is, invoke turns into a vanilla function

call, simply loading the data and then calling the specified

function. If not, then invoke offloads the task onto MSEs. To

do so, it assembles a packet containing: the function pointer

(64 b), the data_ptr pointer (64 b), the future pointer (64 b), the
flags (2 b), and additional arguments. All of our services fit in

a packet smaller than a cache line. The core sends this packet

to the MSE on the local tile, which is thereafter responsible

for scheduling and executing the task.

ms_send and ms_wait can be implemented via loads and

stores. ms_wait spins on the future, waiting for a ready flag

to be set. Like other synchronization primitives, ms_wait
yields to other threads while spinning or quiesces the core if

no threads are runnable. ms_send writes the result into the

future pointer using a store-update instruction that updates

the value in remote caches rather than allocating it locally.

store-update is similar to a remote store [37], except that it

pushes updates into a private cache, rather than the home

LLC bank, if the data has a single sharer. store-update lets
ms_send communicate values without any further coherence

traffic in the common case. Sending results through memory

is done to simplify interactions with the OS (Sec. 4.4).

Compilation and loading: invoke instructions are gener-
ated from the ms_invoke API, which is supplied as a library.

FPGA bitstreams are bundled with application code as a fat

binary and FPGAs are configured when a program is loaded

or swapped-in.

Coherence: Livia uses clustered coherence [61], with each

tile forming a cluster. OoO cores and MSEs snoop coherence

traffic to each tile. Directories also trackMSEs in the memory

controllers as potential sharers. This design keeps MSEs

coherent with minimal extra state over the baseline.



Work-shedding: Falling back to OoO cores: In several pla-
ces, Livia simplifies its design by relying on OoO cores to run

tasks in exceptional conditions, e.g., when an MSE suffers a

page fault. We implement this by triggering an interrupt on

a nearby OoO core and passing along the architectural state

of the task. This is possible in the FPGA design because each

bitstream corresponds to a known application function.

4.2 MSE controller
We now describe the new microarchitectural component

introduced by Livia, the Memory Service Element (MSE).

Fig. 10 shows the high-level design: MSEs are distributed

on each tile and memory controller, and each consists of a

controller and an execution engine. We first describe the

MSE controller, then the MSE execution engine.

The MSE controller handles invoke messages from cores

and other MSEs. It has two jobs: (i) scheduling work to mini-

mize data movement, and (ii) providing architectural support
to simplify programming.

4.2.1 Scheduling tasks and data across the memory
hierarchy to minimize data movement

We first explain how Livia schedules tasks in the common

case, then explain how Livia converges over time to a near-

optimal schedule and handles uncommon cases.

Common case: The MSE decides where to execute a task by

walking the memory hierarchy, following the normal access

path for the requested data_ptr in the invoke instruction.

At each level of the hierarchy, the MSE proceeds based on

whether the data is present. When the data is present, the

MSE controller schedules the task to run locally. Since MSEs

are on each tile and memory controller, there is always an

MSE nearby. When the data is not present, theMSE controller

migrates the task to the next level of the hierarchy (except as

described below) and repeats. The same process is followed

for tasks invoked from MSEs, except that the MSEs bypass

the core’s private caches when running tasks from the LLC.

L2s

Shared L3
(slices)

Cores
+ L1s

Memory

invoke(𝒇, )

MSEs

Task execution Data movement Tag lookup

invoke(𝒇, )

invoke(𝒇, )

Fig. 11. Livia’s task scheduling for three invokes on different data:

x, y, and z. Livia schedules tasks by following the normal lookup

path and migrates data to its best location through sampling.

Fig. 11 shows three examples. invoke(f,x) finds x in the L1

and so executes f(x) on the main core. invoke(f,y) checks for
y in the L1 and L2 before finding y in the LLC and executing

f(y) on the nearby MSE. (The thin dashed line to the L2 is

explained below.) invoke(f,z) comes from an MSE, not a core,

so it bypasses the private caches and checks the LLC first.

Assuming data has settled in its “natural” location in the

memory hierarchy, this simple procedure schedules all tasks

to run near-data with minimal added data movement over

Ideal. Note that races are not a correctness issue in this

scheduling algorithm, since once a scheduling decision is

made, the MSE controller issues a coherent load for the data.

Migrating data to its natural location: The problem is

that data must migrate to its natural location in the hierarchy

and settle there. In general, finding the optimal data layout

is a very challenging problem. Prior work [5] has addressed

this problem in the LLC by replicating the cache tags; Livia

takes a simpler and much less expensive approach.

When the data is not present, the MSE controller flips a

weighted coin, choosing whether to (i) migrate the task to

the next level of the hierarchy, or (ii) run the task locally.

With ϵ probability (ϵ = 1/32 in our implementation), the task

is scheduled locally and the MSE controller fetches the data

with the necessary coherence permissions. The thin dashed

line in Fig. 11 illustrates this case, showing that invoke(f,y)
will occasionally fetch the data into the L2. Similar to prior

caching policies [73], we find that this simple, stateless policy

gradually migrates data to its best location in the memory

hierarchy. For data that is known to have low locality, the pro-

grammer can disable sampling by passing the STREAMING
flag to ms_invoke. (See Sec. 6.5 for a sensitivity study.)

When data is cached elsewhere: Sometimes the MSE con-

troller will find that the data is cached in another tile’s L2. If

the L2 has a shared (i.e., read-only) copy and the EXCLUSIVE
flag is not set, then the LLC also has a valid copy and the MSE

controller can schedule the task locally in the LLC. Other-

wise, the MSE controller schedules the task to execute on the

remote L2’s tile. This is illustrated by invoke(f,z) in Fig. 11,

which shows how Livia locates z in a remote L2 and executes

f(z) on the remote tile’s MSE.

Spawning tasks in memory controllers: When data re-

sides off-chip, tasks will execute in the memory controller

MSEs, where they may spawn additional tasks. Scheduling

tasks in the memory controller MSEs is challenging because

these MSEs lie below the coherence boundary. To find if

a spawned task’s data resides in the LLC, a naïve design

must schedule spawned tasks back on their home LLC bank.

However, this naïve design adds significant data movement

because tasks spawned in the memory controllers tend to

access data that is not in the LLC and so usually end up back

in the memory controller MSEs anyway.



To accelerate this common case, Livia speculatively for-

wards spawned tasks to their home memory controller MSE,

which will immediately schedule a memory read for the re-

quested data. In parallel, Livia checks the LLC home node

for coherence. If the data is present, the task executes in the

LLC; otherwise, the LLC adds the new memory controller

MSE as a sharer. Either way, the LLC notifies the memory

controller MSE accordingly. The memory controller MSE

will wait until it has permissions before executing the task.

This approach hides coherence permission checks behind

memory latency at the cost of modest complexity (Sec. 6.5).

4.2.2 Architectural support for task execution
Once a scheduling decision is made, the MSE runs the task

by, in parallel: loading the requested data, allocating the task

an execution context in local memory, and finally starting ex-

ecution. The MSE controller hides the task startup overhead

with the data array access. If a task runs a long-latency op-

eration (a load or ms_wait), the MSE controller deschedules

it until the response arrives. If the MSE controller ever runs

out of local storage for execution contexts, it sheds incoming

tasks to an idle hardware thread on the local OoO core [100]

or, if the local OoO core is overloaded, to the invoking core

to apply backpressure.

Implementation overhead: The MSE controller contains

simple logic and its area is dominated by storage for execu-

tion contexts. To support one outstanding execution context

from each core (a conservative estimate), the MSE requires

approximately 64B × 64 cores = 4KB of storage.

4.3 MSE execution engine
The MSE execution engine is the component that actually

runs tasks throughout the cache hierarchy. We consider two

design alternatives, depicted in Fig. 10: (i) in-order cores
and (ii) embedded FPGAs. The former is the simplest design

option, whereas the latter delivers higher performance.

4.3.1 In-order core
The first design option is to execute tasks on a single-issue in-

order core placed near cache banks and memory controllers.

This core executes the same code as the OoO cores, though,

to reduce overheads and simplify context management in

the MSE controller, each task is allocated a minimal stack

sufficient only for local variables and a small number of func-

tion calls. If a thread would ever overrun its stack, it is shed

to a nearby OoO core (see “Work-shedding” above).

Implementation overhead: Weassume single-issue, in-order

cores similar to an ARM Cortex M0, which require approxi-

mately 12,000 gates [7]. This is a small area and power over-

head over a wide-issue core, comparable to the size of its L1

data cache [6].

4.3.2 FPGA
The in-order core is a simple and cheap design point, but it

pays for this simplicity in performance. Since a single appli-

cation request may invoke a chain of many tasks, Livia is

sensitive to MSE execution latency (see Sec. 6). We therefore

consider a specializedmicroarchitectural design that replaces

the in-order core with a small embedded FPGA. Memory Ser-

vice tasks take negligible area (Table 1), letting us configure

the fabric when a program is loaded or swapped in. An inter-

esting direction for further study is the area-latency tradeoff

in fabric design [4] and fabrics that can swap between multi-

ple designs efficiently [30], but these are not justified by our

current workloads given their negligible area.

Implementation overhead: As indicated in Table 1, Mem-

ory Services map to small FPGA designs. Among our bench-

marks, the largest area is still less than 0.01mm
2
. Hence, a

small fabric of 0.1mm
2
(3% area overhead on a 64-tile system

at 200mm
2
) can support more than 10 concurrent services.

4.4 System integration
Livia’s design includes several mechanisms for when Mem-

ory Services interact with the wider system.

Virtual memory: Tasks execute in an application’s address

space and dereference virtual addresses. The MSE controller

translates these addresses by sharing the tile’s L2 TLB. MSEs

located on memory controllers include their own small TLBs.

We assume memory is mapped through huge pages so that a

small TLB (a few KB) suffices, as is common in applications

with large amounts of data [49, 56, 69].

Interrupts: Memory Service tasks are concurrent with ap-

plication threads and execute in their own context (Sec. 3).

Hence, Memory Services do not complicate precise inter-

rupts on the OoO cores. Memory Service tasks can continue

executing on the MSEs while an OoO core services an I/O

interrupt and, since they pass results through memory, can

even complete while the interrupt is being processed. Faults

from within a Memory Service task are handled by shedding

the task to a nearby OoO core, as described above.

OS thread scheduling: Futures are allocated in an applica-

tion’s address space, and results are communicated through

memory via a store-update. This means it is safe to desched-

ule threads with outstanding tasks, because the response will

be just be cached and processed when the thread is resched-

uled. Moreover, the thread can be rescheduled on any core

without correctness concerns. Memory Service tasks are de-

scheduled when an application is swapped out by sending an

inter-process interrupt (IPI) that causes MSEs to shed tasks

from the swapped-out process to nearby OoO cores.



Cores 64 cores, x86-64 ISA, 2.4 GHz, OOO Goldmont µarch

(3-way issue, 78-entry IQ/ROB, 16-entry SB, ... [3])

L1 32 KB, 8-way set-assoc, split data and instruction caches

L2 128 KB, 8-way set-assoc, 2-cycle tag, 4-cycle data array

LLC
32MB (512 KB per tile), 8-way set-assoc, 3-cycle tag,

5-cycle data array, inclusive, LRU replacement

NoC mesh, 128-bit flits and links, 2/1-cycle router/link delay

Memory 4 DRAM controllers at chip corners; 100-cycle latency

Table 2. System parameters in our experimental evaluation.

5 Experimental Methodology
Simulation framework: We evaluate Livia in execution-

driven microarchitectural simulation via a custom, cycle-

level simulator, which we have validated against end-to-end

performance models (like Sec. 2) and through extensive ex-

ecution traces. Tightly synchronized simulation of dozens

of concurrent execution contexts (e.g., 64 cores + 72 MSEs)

restricts us to simulations of hundreds of millions of cycles.

System parameters: Except where specified otherwise, our
system parameters are given in Table 2. We model a tiled

multicore system with 64 cores connected in a mesh on-chip

network. Each tile contains a main core that runs applica-

tion threads (modeled after Intel Goldmont), one bank of the

shared LLC, and MSEs (to ease implementation, our simula-

tor models MSEs at both the L2 and LLC bank). MSE engines

are modeled as simple IPC=1 cores or FPGA timing models,

as appropriate to the evaluated system. We conduct several

sensitivity studies and find that Livia’s benefits are robust to

a wide range of system parameters.

Workloads: We have implemented four important data-ac-

cess-bottlenecked workloads as Memory Services: lock-free

AVL trees, linked lists, PageRank, and producer-consumer

queues. We evaluate these workloads on different data sizes,

system sizes, and access patterns. These workloads are de-

scribed in more detail as they are presented in Sec. 6.

Each workload first warms up the caches by executing

several thousand tasks, and we present results for a represen-

tative sample of tasks following warm-up. To reduce simula-

tion time for Livia, our warm-up first runs several thousand

requests on the main cores using normal loads and stores

before running additional Livia warm-up tasks via invoke.
This fills the caches quickly, and we have confirmed that this

methodology matches results run with a larger number of

Livia warm-up tasks.

Systems: We compare these workloads across five systems:

• CPU: A baseline multicore with a passive cache hier-

archy that executes tasks in software on OoO cores.

• PIM: A near-memory system that executes tasks on

simple cores within memory controllers.

• Hybrid-PIM: A hybrid design that executes tasks on

OoO cores when they are cached on-chip, or on simple

cores in memory controllers otherwise.

• Livia-SW: Our proposed design with MSE execution

engines implemented as simple cores.

• Livia-FPGA: Our proposed design with MSE execution

engines implemented as embedded FPGAs.

PIM and Hybrid-PIM are implemented basically as Livia-SW

with MSEs at the L2 and LLC disabled. The CPU system

executes each benchmark via normal loads and stores, and

all other systems use our new invoke instruction.

Metrics: We present results for execution time and dynamic

execution energy, using energy parameters from [89]. Where

possible, we breakdown results to show where time and

energy are spent throughout the memory hierarchy. We

focus on dynamic energy because Livia has negligible impact

on static power and to clearly distinguish Livia’s impact on

data movement energy from its overall performance benefits.

6 Evaluation
We evaluate Livia to demonstrate the benefits of the Mem-

ory Service programming model and Livia hardware on four

irregular workloads that are bottlenecked by data movement.

We will show that performing computation throughout the

memory hierarchy provides dramatic performance and en-

ergy gains. We will also identify several important areas

where the current Livia architecture can be improved. Some

results are described only in text due to limited space; these

can be found online in a technical report [19].

6.1 Lock-free-lookup AVL tree
We first consider a lock-free AVL search tree [23]. Binary-

search trees like this AVL tree are popular data structures,

despite being bottlenecked by pointer chasing, which is diffi-

cult to accelerate. In addition to the usual child/parent point-

ers, pointers to successors and predecessor nodes are used

to locate the correct node in the presence of tree rotations,

allowing concurrent modifications to the tree structure. We

implemented this tree as aMemory Service in three functions:

the root function walks a single level of the tree, invoking

itself on the child node pointer, or returning the correct node

if a matching key is found; two other functions follow suc-

cessor/predecessor pointers until the correct node is found

(or a sentinel, in the rare case that a race is detected).

Livia accelerates trees dramatically: Weevaluated a 512MB

tree (≈8.5 million nodes) on a 64-tile system. Fig. 12 shows

the average number of cycles and dynamic execution energy

for a single thread to walk the tree on a uniform distribution,

broken down into components across the system. The graph

also shows, in text, each system’s improvement vs. CPU.

PIM takes nearly 2× as long as CPU because it cannot

leverage the locality present in nodes near the root. Hybrid-

PIM gives some speedup (18%), but its benefit is limited by

the high NoC latency for both the in-CPU and in-memory-

controller portions of its execution. Hybrid-PIM spends more
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Fig. 12. AVL tree lookups on 64 tiles with uniform distribution.

time and energy in cores due to the overhead of invoke in-
structions. Livia-SW and Livia-FPGA perform significantly

better, accelerating lookups by 54% and 69%, respectively.

Livia drastically reduces NoC traversals, and Livia-FPGA ad-

ditionally reduces cycles spent in computation at each level

of the tree. This leads to similar dynamic energy improve-

ments of 61% and 63%, respectively.
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Fig. 13. AVL tree lookups on 64 tiles with Zipfian distribution.

Livia works well across access patterns: Fig. 13 shows

that these benefits hold on the more cache-friendly YCSB-B

workload, which accesses keys following a Zipf distribution

(α = 0.9). Due to increased temporal locality, performance

improves in absolute terms for all systems. More tree levels

fit in the core’s private caches, reducing the opportunity for

Livia to accelerate execution. Nevertheless, Livia still sees the

largest speedups and energy savings. In contrast, PIM gets

little speedup because it does not exploit locality, making it

relatively worse compared to CPU (now over 2× slower).

Liviaworkswell at different data and system sizes: Fig. 14
shows how Livia performs as we scale the system size. Scal-

ing the LLC allows more of the tree to fit on-chip, but since

binary trees grow exponentially with depth, this benefit is

outweighed by the increasing cost of NoC traversals. Livia is

effective at small tree sizes and scales the most gracefully of
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all systems because it halves NoC traversals for tasks execut-

ing in the LLC and memory. Going from 16 tiles to 144 tiles,

Livia-FPGA’s speedup improves from 53% to 87%, whereas

both PIM and HybridPIM do relatively worse as the system

scales because they do not help with NoC traversals.

Fig. 15 shows the effect of scaling tree size on a 64-tile

system, going from a tree that fits in cache to one 256×

larger than the LLC. PIM and HybridPIM both improve as a

larger fraction of the tree resides in memory, getting up to

34% speedup. Livia maintains consistent speedups of gmean

54%/70% on small to large trees. This is because Livia accel-

erates tree walks throughout the memory hierarchy, halving

NoC traversals in the LLC, and, since tree levels grow expo-

nentially in size with depth, a large fraction of tree levels

remain on-chip even at the largest tree sizes.

Livia’s benefits remain substantial even when doing ex-
tra work: Most applications use the result of a lookup as

input to some other computation. We next consider whether

Livia’s speedup on lookups translates into end-to-end per-

formance gains for such applications. Fig. 16 evaluates a

workload that, after completing a lookup, loads an associ-

ated value via regular loads on the main core. This extra

processing introduces additional delay and cache pollution.

Despite this, Fig. 16 shows that Livia still provides sig-

nificant end-to-end speedup, even when the core loads an

additional 1 KB for each lookup. (This value size corresponds
to an overall tree size of 8GB.) Livia’s benefits remain sub-

stantial for two reasons. First, the out-of-order core is able

to accelerate the value computation much more effectively
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Fig. 16. Avg. cycles to lookup a key and then load the associated

value on the main core. Results are for a 512MB tree at 64 tiles, for

different value sizes along the x-axis.

than the tree lookup, so the performance loss from accessing

a 1KB value is much less than an accessing an equivalent

amount of data in a tree lookup. Second, the cache pollution
from the value is not as harmful as it seems. Though the

value flushes tree nodes from the L1 and L2, a significant

fraction of the tree remains in the LLC. As a result, the time

it takes to do a lookup (i.e., ignoring “Processing” in Fig. 16),

only degrades slightly as value grows larger.

6.2 Linked lists
We next consider linked lists. Despite their reputation for

poor performance, linked lists are commonly used in situa-

tions where pointer stability is important, as standalone data

structures, embedded in a larger data structure (e.g., separate

chaining for hash maps), or used to manage raw memory

without overhead (e.g., free lists in an allocator).

Livia accelerates linked lists dramatically: Because of

theirO (N ) lookup time, in practice linked lists are short and

embedded in larger data structures. To evaluate this scenario,

we first consider an array of 4096 linked-lists, each with 32

elements (8MB total). To perform a lookup,we generate a key

and scan the corresponding list. Keys are chosen randomly,

following either a uniform or Zipfian distribution.
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Fig. 17. Linked-list lookups on 64 tiles with uniform distribution.

Fig. 17 shows the uniform distribution. The data fits in

the LLC, so PIM is very inefficient. Hybrid-PIM also sees

no benefit vs. CPU because the working set fits on-chip.

(Its added energy is due to invoke instructions.) Meanwhile,

both Livia-SW and Livia-FPGA see large speedups of 64% and

90%, respectively, because task execution is moved off energy-

inefficient cores andNoC traversals are greatly reduced. Livia

improves energy by 4.4× and 4.7×. Energy savings exceed

performance gains because, in addition to avoiding a NoC tra-

versal for each load, Livia also eliminates an eviction, which
is not on the critical path but shows up in the energy.

In fact, Fig. 17 is potentially quite pessimistic, since Livia

can achieve much greater benefits in some scenarios. Ini-

tially, we unintentionally allocated linked-list nodes so that

they were located in adjacent LLC banks. With this alloca-

tion, Livia could traverse a link in the list with a single NoC

hop (vs. a full NoC round-trip for CPU), achieving dramatic

speedups of 5× or more. In Fig. 17, we eliminate this effect

by randomly shuffling nodes, but we plan in future work to

explore techniques that achieve a similar effect by design.
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Fig. 18. Linked-list lookups on 64 tiles with Zipfian distribution.

Livia works well across access patterns: Fig. 18 shows

linked-list results with the YCSB-B (Zipfian) workload. Un-

like the AVL tree (Fig. 13), the Zipfian pattern has less impact

on linked-list behavior. This is because linked-list lookups

still quickly fall out of the private caches and enter the LLC.

Livia works well at different data and system sizes: Sim-

ilar to the AVL tree, Figs. 19 and 20 show how results change

when scaling the system and data size, respectively. Specifi-

cally, we scale input size by increasing the number of lists.

(Results are similar when scaling the length of each list.)

As before, Livia’s benefits grow with system size as NoC

traversals become more expensive. However, as data size

increases, Livia’s benefits decrease from 1.9× to 1.54×. This
is because the lists fall out of the LLC and lookups must go

to memory, which starts to dominate lookup time. PIM gets

speedup only at the largest list size, when most tasks execute

in-memory. HybridPIM gets modest speedup, up to 36%, but

significantly under-performs Livia even when most of the

lists reside in memory.
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Fig. 19. Avg. lookup cycles on 4096 linked-lists vs. system sizes.
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Fig. 20. Avg. cycles per linked-list lookup at 64 tiles vs. input size.

6.3 Graph analytics: PageRank
We next consider PageRank [66], a graph algorithm, running

on synthetic graphs [16] that do not fit in the LLC at 16/64

cores. We compare multithreaded CPU push and pull imple-

mentations [84] to a push-based implementation written as a

Memory Service, which accelerates edge updates by pushing

them into the memory hierarchy where they can execute

efficiently near-data, similar to recent work [64, 100, 101].
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Fig. 21. PageRank on synthetic random graphs at 16/64 cores.

Livia accelerates graph processing dramatically: Fig. 21
shows the time needed to process one full iteration after

warming up the cache for one iteration. We do not break

down cycles across the cache hierarchy due to the difficulty

in identifying which operations are on the critical path.

Livia is 60%/51% faster than CPU-Pull at 16/64 tiles and

2.8×/3.4× faster than CPU-Push. Notice that pull is faster

than push in the baseline CPU version, but the push-based

Memory Service is better than both. (PIM and HybridPIM

are both faster than CPU-Push, but still slower than CPU-

Pull.) This is because push-based implementations in the

CPU version incur a lot of expensive coherence traffic to

invalidate vertices in other tiles’ private caches and must

update data via expensive atomic operations. Livia avoids

this extra traffic by executing most updates in-place in the

caches. PageRank tasks run efficiently in software, so Livia-

FPGA does not help much.

Curiously, Livia’s speedup decreases at 64 tiles. This is

because of backpressure that frequently sheds work back to

remote cores (Sec. 4.2.2). In particular, we find that the four

MSEs at the memory controllers are overloaded with 64 tiles.

In the future, we plan to avoid this issue through smarter

work-shedding algorithms and higher-throughput MSEs at

the memory controllers.

Finally, CPU-Push, CPU-Pull, Livia-SW, and Livia-FPGA

get dynamic energy all within 10% of each other (omitted for

space), whereas PIM and HybridPIM add modest dynamic

energy (20-35%). This is due to instruction energy from shed

tasks, and the relatively large fraction of data accesses that go

to memory for PageRank. However, bear in mind that Livia

still achieves significant end-to-end energy savings because

its improved performance reduces static energy: at 16/64

tiles, Livia-FPGA improves overall energy by 1.24×/1.16× vs.

CPU-Pull and by 1.82×/1.78× vs. CPU-Push.

6.4 Producer-consumer queue
Many irregular applications are split into stages and com-

municate among stages via producer-consumer queues [78].

These queues perform poorly on conventional invalidation-

based coherence protocols, since each push and pop incurs

at least two round-trips with the directory. With multiple

producers, the number of coherence messages can be much

worse than two. Fortunately, Memory Services give a natural

way to implement queues without custom hardware support

for message passing. We implement multi-producer, single-

consumer queues by invoking pushes on the queue itself.

Only a single NoC traversal is on the critical path, instead of

three (two round-trips, partially overlapped) in CPU systems.

All queue operations occur on the consumer’s tile, avoiding

unnecessary coherence traffic and leaving the message in

the receiver’s L2, where it can be quickly retrieved.

Livia accelerates producer-consumer queues dramati-
cally: Fig. 22 shows the latency to push and pop an item

from the queue on systems with 16 to 144 tiles. To factor out

directory placement, we measure the latency between oppo-

site corners of the mesh network. These results are therefore

worst-case, but within a factor of two of expected latency.

Compared to the CPU baseline, Livia-SW and Livia-FPGA

accelerate producer-consumer queues by roughly 2× across
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Fig. 22. Avg. latency for producer-consumer queue vs. system size.

all system sizes. This is because Livia eliminates NoC de-

lay due to coherence traffic. With multiple senders, even

larger speedup can be expected as senders can conflict and

invalidate the line mid-push on the CPU system.

Note that push uses the STREAMING flag (Sec. 3) to pre-

vent data from being fetched into the sender’s L2. With-

out this hint, we observe modest performance degradation

(roughly 25%, depending on system size), as data is occasion-

ally migrated to the wrong cache via random sampling.

6.5 Sensitivity studies
Livia is insensitive to coremicroarchitecture: We ran the

512MB AVL tree on 64 tiles modeling Silvermont, Goldmont,

Ivy Bridge, and Skylake core microarchitectures. We found

that core microarchitecture had negligible impact, since Livia

targets benchmarks dominated by data-dependent loads. On

such workloads, increasing issue width is ineffective because

simple, efficient core designs already extract all available

memory-level parallelism.
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Fig. 23. Avg. lookup cycles on a 512MB AVL tree at 64 tiles. Livia’s

benefits increase with larger on-chip routing delay.

Livia’s benefits increasewithnetwork delay: Next, Fig. 23
considers the impact of increasing NoC delay on Livia’s re-

sults, e.g., due to congestion. We found, unsurprisingly, that

Livia’s benefits grow as the NoC becomes more expensive,

achieving up to 89% speedup as routing delay grows. How-

ever, Livia still provides substantial benefit on lightly loaded

networks—even with zero router delay, Livia-FPGA gets 33%

speedup for the AVL tree at 64 tiles.
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Livia’s steady-state performance is insensitive to sam-
pling probability: Fig. 24 shows the steady-state perfor-

mance of Livia on an AVL tree, after several million requests

to warm up the caches, with different sampling probability.

Similar to adaptive cache replacement policies [45, 73], we

find that Livia is not very sensitive to sampling rate, so long

as sampling is not too frequent. That said, we have observed

that sampling can take a long time to converge to the steady-

state, so ϵ should not be too small. Looking forward, Livia

would benefit from data-migration techniques that can re-

spond quickly to changes in the application’s access pattern.

Livia’s speculativememory prefetching is effective: Livia
hides LLC coherence checks by performing them in parallel

with a DRAM load for tasks spawned at memory controllers.

We found that, on the AVL tree and linked list benchmarks

at 64 tiles, this technique consistently hides latency equiva-

lent to 26% of the DRAM load. The savings depend on the

cost of coherence checks: speculation saves latency equal

to 13% of the DRAM load at 16 tiles, but up to 38% at 144

tiles. Speculation is accurate on input sizes larger than the

LLC (e.g., >99% accuracy for 512MB AVL tree), but can be

inaccurate for small inputs that just barely do not fit in the

LLC (worst-case: 45% accuracy). We expect a simple adaptive

mechanism would avoid these problem cases.

7 Related work
We wrap up by putting Livia in the context of related work

in data-centric computing and a taxonomy of accelerators.

7.1 Data-centric computing
Data-centric computing has a long history in computer sys-

tems. There is a classic tradeoff in system design: should we

move compute to the data, or data to the compute?

At one extreme, conventional CPU-based systems adopt

a purely compute-centric design that always moves data to

cores. At the other extreme, spatial dataflow architectures

adopt a purely data-centric design that always moves data

to compute [53, 88]. Many designs have explored a middle

ground between these extremes. For example, hierarchical

dataflow designs [67, 76] batch groups of instructions to-

gether for efficiency, and there is a large body of prior work

on scheduling tasks to execute near data [10, 26, 46, 63].

Similarly, active messages (AMs) [91] and remote-procedure



calls (RPCs) [12] execute tasks remotely, often to move them

closer to data.

Livia also takes a middle ground, adding a dash of data-

centric design to existing systems. Livia improves on prior

data-centric systems in two respects. First, we rely on the

Memory Service model to statically identify which functions

are well-suited to execute within the memory hierarchy,

rather than always migrating computation to data (unlike,

e.g., EM2 [53] and pure dataflow). Second, we rely on cache

hardware to dynamically discover locality and schedule com-

putation and data, rather than statically assigning tasks to

execute at specific locations [12, 46, 91] or schedule compute

infrequently in large chunks [10]. We believe this division

of work between hardware and software strikes the right

balance, letting each do what it does best [63].

7.2 Schools of accelerator design
The recent trend towards architectural specialization has led

to a proliferation of accelerator designs. We classify these

designs into three categories: co-processor, in-core, and in-
cache. Livia falls into the under-explored in-cache category.
Co-processor designs treat an accelerator as a concurrent

processor that is loosely integratedwith cores. Co-processors

can be discrete cards accessed over PCIe (e.g., GPUs and

TPUs [48]), or IP blocks in a system-on-chip. Co-processor de-

signs yield powerful accelerators, but make communication

between cores and the accelerator expensive. PIM [38, 41]

falls into this category, as do existing designs that integrate

a powerful reconfigurable fabric alongside a CPU in order to

accelerate large computations [27, 43, 65, 71, 95]. In contrast,

Livia integrates many small reconfigurable fabrics through-

out the memory hierarchy to accelerate short tasks.

In-core designs treat an accelerator as a “mega functional

unit” that is tightly integrated with cores [31, 34, 35]. A good

example is DySER [31], which integrates a reconfigurable

spatial array into a core’s pipeline to accelerate commonly

executed hyperblocks. However, in-core designs like DySER

often do not interface with memory at all, whereas Livia

focuses entirely on interfacing with memory to accelerate

data-heavy, irregular computations. In-core acceleration is

insufficient for these workloads (Sec. 2.3).

In-cache designs are similar to in-core designs in that they

tightly integrate an accelerator with an existing microarchi-

tectural component. The difference is that the accelerator is

tightly integrated into the memory hierarchy, not the core.

This part of the design space is relatively unexplored. As

discussed in Sec. 2.4, prior approaches are limited to a few

operations and still require frequent data movement between

cores and the memory hierarchy to stream instructions and

fetch results [1, 24, 37, 51, 57, 79, 94]. Livia further develops

the in-cache design school of accelerators by providing a fully

programmable memory hierarchy that captures locality at all

levels and eliminates unnecessary communication between

cores and caches. As a result, Livia accelerates a class of

challenging irregular workloads that have remained beyond

the reach of existing accelerator designs.

8 Conclusion and Future Work
This paper has presented Memory Services, a new program-

ming model that enables near-data processing throughout

the memory hierarchy. We designed Livia, an architecture

for Memory Services that introduces simple techniques to

dynamically migrate tasks and data to their best location in

the memory hierarchy. We showed that these techniques sig-

nificantly accelerate several challenging irregular workloads

that are at the core of many important applications. Memory

Services open many avenues for future work:

New applications: This paper focuses on irregular work-

loads, but there are awide range of otherworkloads amenable

to in-cache acceleration. Prior work contains many exam-

ples: e.g., garbage collection [60], data deduplication [86],

and others listed in Sec. 1. Unfortunately, it is unlikely that

general-purpose systems will implement specialized hard-

ware for these tasks individually. We intend to expand Livia

and Memory Services into a general-purpose platform for

in-cache acceleration of these applications.

Productive programming: This paper presented an initial

exploration of the Memory Service programming model tar-

geted at expert programmers with deep knowledge of their

workloads and of hardware. We plan to explore enhance-

ments to the model and compiler that will make Memory

Services more productive for the average programmer, e.g.,

by providing transactional semantics for chains of tasks [11]

or by extracting Memory Services from lightly annotated

code.

Improved microarchitecture: Finally, we see abundant op-
portunities to refine Livia’s current design. Livia employed

existing cores and FPGAs to simplify its design and demon-

strate the basic potential of Memory Services. However, FP-

GAs are not the final answer for MSE execution, and we

have left several important issues in the MSE controller un-

explored. We plan to explore more efficient architectures for

task execution, such as CGRAs [4, 65, 71] with wider data-

paths. We will also develop policies in the MSE controller

to manage resources and avoid harmful interference across

co-running applications. Finally, our evaluation highlighted

several opportunities to improve the microarchitecture, e.g.,

by designing more responsive data-migration techniques.
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A Appendix: Expanded Results for the
ASPLOS’20 Conference Paper

This appendix includes results omitted due to limited space

from the ASPLOS’20 paper.

Livia scales well with increasing application threads:
We explored Livia’s scalability by running the AVL tree

benchmark on a 64-tile system, increasing the number of ap-

plication threads from 1 to 64. Each thread performs lookups
on a shared tree. Fig. 25 shows the average lookup latency:
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Fig. 25. Avg. lookup cycles on a 512MB AVL tree at 64 tiles width

different numbers of application threads.

Up to 32 application threads,Livia’s speedup is close to that

achievedwith a single thread. Thereafter,memory bandwidth

begins to limit performance (see sensitivity study below).

Alleviating bottlenecks at the memory-controller MSEs:
When runningwith 64 threads,we discovered that thememory-

controller MSEs became a major bottleneck. Tasks often

queued at thememory controller for hundreds of cycles. (This

effect was also seen in PageRank in Sec. 6.3.) To alleviate this,

we increased the memory-controller MSE throughput by ex-

ecuting multiple tasks concurrently (e.g., n-wide multicore

or multithreaded core). Fig. 26 shows the average lookup
latency for each system with 64 application threads, vary-

ing the execution width (number of concurrently executing

tasks) at the memory-controller MSEs.
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Fig. 26. Avg. lookup cycles on a 512MB AVL tree at 64 tiles with

64 application threads, varying memory-controller MSE execution

width. With MSE width < 4, tasks spend significant time queueing

at the memory controllers and end-to-end performance suffers.

Fig. 26 shows that Livia performs worse than the baseline

CPU system when tasks sequentialize at the memory con-

trollers (width = 1). Livia’s performance quickly increases

until width = 4, and then diminishes because memory band-

width is saturated. Note that the other MSEs are not a bot-

tleneck at width = 1, even with 64 threads.

Livia scaleswell with increasedmemory bandwidth: We

also explored the effect of increasing main memory band-

width, e.g., using High BandwidthMemory (HBM). We found

that with increased bandwidth, the memory-controllerMSE’s

L1 data cache’s MSHRs became a bottleneck, so we increased

the number of MSHRs from 4 to 8. Fig. 27 shows the per-

formance with this configuration, comparing our baseline

system and one with roughly twice the memory bandwidth.
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Fig. 27. Avg. lookup cycles on a 512MB AVL tree at 64 tiles and 64

application threads, varying memory bandwidth.

With the additional bandwidth, Livia recovers its large

speedup over CPU at 64 application threads, nearly match-

ing the speedup with a single thread. This shows that, af-

ter increasing memory-controller MSE throughput, memory

bandwidth is Livia’s main bottleneck.

Livia is insensitive to microarchitecture: We ran the 512

MB AVL tree on 64 tiles, with OoO cores modeling Silver-

mont, Goldmont, Ivy Bridge, and Skylake core microarchitec-

tures. As show in Fig. 28, core microarchitecture had only a

small impact on Livia’s speedup, as the workload is memory-

system bound.
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